
The autoMFA Package for Automatically Fitting the
Mixture of Factor Analyzers Model in R.

John Davey
The University of Adelaide

Gary Glonek
The University of Adelaide

Sharon Lee
The University of Queensland

Abstract

This article introduces the autoMFA package for R, which includes five methods for
automatically fitting the mixture of factor analyzers (MFA) model. Some of the methods
in this package have existing MATLAB implementations, but this is the first implemen-
tation of them to be available on the Comprehensive R Archive Network (CRAN). Each
method infers the number of components, g and the number of factors, q with as little
input from the user as possible. The autoMFA package also provides diagnostic and clus-
tering information for the methods implemented, including log-likelihood values and the
predicted clustering.

Keywords: clustering, mixture models, factor analysis, R.

1. Introduction: The mixture of factor analyzers model
The mixture of factor analyzers (MFA) model is a multivariate statistical model which can
simultaneously perform clustering and local dimension reduction, introduced by Ghahra-
mani, Hinton et al. (1997), who also proposed a closed form algorithm for fitting the model.
McLachlan and Peel (2000) provide further discussion of the model as well as an alternate
fitting model fitting procedure. The original model has been applied to various problems, such
as the clustering of cell lines on the basis of gene expressions from microarray experiments
(Mclachlan, Peel, and Bean 2003) and in image processing, where it has been used for face
detection (Yang, Ahuja, and Kriegman 1999).
More recently, various extensions of the MFA model have been applied to the characterisation
of multivariate air pollutant exposures (Maruotti, Bulla, Lagona, Picone, and Martella 2017),
the estimation of value at risk in investment portfolios (Ko and Baek 2018) and the automated
gating of mass cytometry data (Lee 2019).
The MFA model is a mixture model where each component of the mixture follows the well
known factor analysis (FA) model. For a p-dimensional data vector Yj , the MFA model is

Zj ∼ Multinomial(1, π)
Yj | (Zij = 1) = µi + BiUj + ej ,

https://orcid.org/0000-0003-0448-7461

2 The autoMFA Package in R

independently for i = 1, . . . , g and j = 1, . . . , n, where

Uj ∼ Nq(0, I) and ej ∼ Np(0, Di)

independently.
As the MFA model is a mixture model, each p-dimensional data point Yj is associated with
a g-dimensional indicator vector Zj which identifies the component to which Yj belongs. The
proportion of data in component i is given by the mixing proportion πi, where 0 ≤ πi ≤ 1 for
i = 1, . . . , n and ∑

i πi = 1 . Each data point is also associated with a qi-dimensional vector
Uj called the factors, where qi < p for i = 1, . . . , g.
Conditioned on data point Yj belonging to component i, Yj follows the FA model with p × 1
mean vector µi, p × q factor loading matrix Bi and p × p diagonal error variance matrix Di.
Under the MFA model

Yj | (Zij = 1) ∼ Np(µi, BiB
⊤
i + Di), (1)

which shows that the MFA model is a Gaussian mixture model (GMM) where each component
has a restricted covariance matrix.
To maintain identifiability, the number of factors, qj , are required to obey the Ledermann
bound (Ledermann 1937),

qi ≤ p + 1 −
√

1 + 8p

2 , (2)

for all i. This bound ensures that the number of parameters required to fit the MFA model
is less than the number required to fit a full-covariance GMM.
The model is often simplified by assuming a common number of factors, q, for all of the com-
ponents in the mixture. This assumption is made in all of the methods included in autoMFA,
apart from amofa. Another popular simplification is to assume a common diagonal matrix D
for all of the components in the mixture. Of the algorithms implemented in autoMFA, only
the vbmfa method makes this assumption.
The traditional method of estimation for the MFA model is by maximum likelihood estimation
via the expectation maximisation (EM) algorithm (Dempster, Laird, and Rubin 1977). To
fit this model, both the number of components, g and the number of factors, q are required.
However, for a given dataset, it is not always obvious what values to these hyperparameters
should take. This package provides several methods which automatically choose sensible
values for g and q with as little input from the user as possible, and then fit the resulting
MFA model.
Even when the Ledermann bound is satisfied for each i, the MFA model still suffers from
an identifiability issue since the distribution of Yj | (zij = 1) only depends on the factor
loading matrices Bi through the term BiB

⊤
i . As a result, if B̃i is a maximum likelihood

estimate for the factor loadings of component i, then for any qi × qi orthogonal matrix V ,
the log-likelihoods of B̃i and B̃iV will be the same. To achieve identifiability, 1

2qi(qi + 1)
constraints must be imposed on the estimated loading matrix B̃i. One approach to applying
these constraints is the varimax rotation (Kaiser 1958). Each method in autoMFA has the
optional input varimax. While the default option is FALSE, if set to TRUE then each of the
factor loading matrices in the fitted model will have been subject to the varimax rotation via
the varimax function from the stats package.

John Davey, Sharon Lee, Sharon Lee 3

Name Infers g Infers q

MFA_ECM ✗ ✗

amofa ✓ ✓

vbmfa ✓ ✗

AMFA ✗ ✓

AMFA_inc ✓ ✓

Table 1: The different methods available in the autoMFA package and the parameters of the
MFA model that they can automatically estimate. Note that an exhaustive search over a
specified parameter space is not considered automatic inference. In the above, g represents
the number of components in the MFA model, whereas q represents the number of factors.

The autoMFA (Davey 2021) package provides 5 different methods for automatically fitting
the MFA model using R (R Core Team 2021). Users may also be interested in the R packages
fabMix (Papastamoulis 2018) and IMIFA (Murphy, Viroli, and Gormley 2021), which both
provide methods for automatically fitting the MFA model using Bayesian frameworks. The
EMMIXmfa (Rathnayake, McLachlan, Peel, Baek, and R Core Team 2019) may also be of
interest, which provides a method for fitting MFA models when g and q are known.

2. Available methods
For given values of g and q, the traditional way to fit the MFA model is using an EM-
type algorithm. We highlight three such schemes here. The first EM-type algorithm for the
MFA model to be proposed was an expectation conditional maximisation (ECM) algorithm
(Meng and Rubin 1993) derived by Ghahramani et al. (1997). This algorithm treats both
the indicator vectors Zj and the factor vectors Uj as latent variables. Later, McLachlan and
Peel (2000) proposed an alternating expectation conditional maximisation (AECM) algorithm
(Meng and van Dyk 1997) which treats the indicator vectors Zj alone as the latent variables
for one cycle, and then treats both the indicator vectors Zj and the factor vectors Uj as latent
variables in the other cycle. With less latent variables used in the first cycle, by the general
rate of convergence properties for the EM algorithm discussed in Dempster et al. (1977), the
AECM should in general converge faster than the original ECM scheme. Most recently, Zhao
and Yu (2008) proposed an ECM algorithm which only treats the indicator vectors Zj as
latent variables. They showed that by avoiding treating the factors Uj as latent variables
altogether, their ECM scheme generally achieves a much higher rate of convergence than the
two other algorithms.
There are currently five methods included in the autoMFA package for automatically fitting
the MFA model. Table 1 summarises whether each algorithm can automatically estimate g
and q. Here, we do not consider an exhaustive search over a specified parameter space as
automatic inference. A short description of the available methods follows.
The MFA_ECM method performs a naive grid search over all values of g and q in a user spec-
ified range. Two initialisation schemes are used; random starts and k-means clustering. By
specifying the number of random initialisations and the number of k-means initialisations,
users can specify how many MFA models are fitted for each combination of g and q. The
MFA models are fitted using the ECM algorithm for the MFA model as described in Zhao
and Yu (2008). Users can choose between two convergence criteria; the absolute difference

4 The autoMFA Package in R

in log-likelihood between the current iteration and the previous iteration or the ratio of the
absolute difference in log-likelihood over the log-likelihood at the previous iteration. Users
also specify a maximum number of ECM iterations to be used in fitting each model. The
ECM iterations are terminated once the maximum number of iterations is reached, even if
the convergence criterion has not yet been met. The best model is chosen according to the
Bayesian information criterion (BIC) (Schwarz 1978).

The amofa method is an implementation of the adaptive mixtures of factor analyzers (AMoFA)
algorithm described in Kaya and Salah (2015). The algorithm comprises two phases: incre-
mental and decremental. In the former, it progressively adds a new component or adds a
new factor to an existing component until a criterion based on the minimum message length
(MML) is met. In the latter phase, the algorithm chooses to remove a component from
the mixture using a criterion based on the posterior probabilities of each point belonging to
each component, until only one component remains. The final model is the model which
obtained the lowest MML value over both phases. The fitting of each candidate model is per-
formed using a slightly modified version of the ECM algorithm for the MFA model described
in Ghahramani et al. (1997). As mentioned earlier, this method does not assume that the
number of factors is the same in each component.

The vbmfa method is an implementation of the variational bayesian mixtures of factor an-
alyzers (VBMFA) algorithm given by Ghahramani and Beal (2000). It is an incremental
algorithm, which starts with a single component and infers the number of components, g, by
splitting existing components into two sub-components. As the name suggests, this method
is based on a Bayesian MFA model, making it unique among the methods in this package, as
the rest are all based on the EM-type algorithms. The authors recommend centering and scal-
ing data before applying the VBMFA algorithm to improve the quality of the fitted models.
Hence, the preprocess method is also included with the autoMFA package. This method
centers and scales the data as suggested by the authors, so vbmfa should be run on the output
of preprocess. It should be noted that while Beal (2003) suggests that this method will infer
the number of factors by producing very small factor loadings in some columns of the factor
loading matrices, we have been unable to reproduce this behaviour.

The AMFA method is an implementation of the automated mixtures of factor analyzers (AMFA)
algorithm from Wang and Lin (2020). Similar to the ECM_MFA method, this method is also
based on the ECM algorithm for the MFA model proposed by Zhao and Yu (2008). However,
the AMFA method automatically infers q by treating it as a parameter in the ECM framework.
This is achieved by using an approximation of the BIC to choose the best value of q among
the set {1, . . . , q′}, where q′ is the largest value of q satisfying the Ledermann constraint. The
number of components, g is inferred using a naive search over a user-specified range.

Finally, the AMFA_inc method chooses q in the same way as the AMFA method, but employs
an incremental approach to determine the number of components g. It starts with a single
component model and then chooses to split a component into two sub-components using the
same heuristic as amofa. This process continues until the algorithm has attempted to split
all of the components in the mixture a specified number of times and no improvement to the
BIC has been made.

John Davey, Sharon Lee, Sharon Lee 5

3. Package usage
We now describe the inputs and outputs for each of the methods described in Section 2.

3.1. Inputs

The inputs of the methods in the autoMFA package are summarised as follows.

Inputs common to all methods

• Y; An n × p data matrix containing the data set that the model will be fitted to. Each
row represents one data point.

• varimax; A boolean indicating whether or not the output factor loading matrices should
be constrained using varimax rotation. Defaults to FALSE.

Inputs common to the AMFA, AMFAinc and MFAECM methods

• eta; The smallest possible entry in any of the error variance matrices. See Zhao and
Yu (2008) for more information. The default value is 5e − 3

• nkmeans; The number of times that k-means clustering will be used to initialise models
for each combination of g and q. The default value is 5.

• nrandom; The number of randomly initialised models that will be used for each combi-
nation of g and q. The default value is 5.

• tol; The ECM algorithm terminates if the measure of convergence falls below this value.
The default value is 1e − 5.

• conv_measure; The convergence measure of the ECM algorithm. The default, diff,
stops the ECM iterations if |l(k+1) − l(k)| < tol where l(k) is the log-likelihood at the
kth ECM iteration. The alternative, ratio, measures the convergence of the ECM
iterations using |(l(k+1) − l(k))/l(k+1)|.

Inputs common to the AMFA, AMFAinc, MFAECM and amofa methods

• itmax; The maximum number of EM or ECM iterations allowed when fitting any MFA
model. For amofa this defaults to 100, for the other methods the default is 500.

Inputs common to the AMFA and MFAECM methods

• gmin; The smallest number of components for which an MFA model will be fitted. The
default value is 1.

6 The autoMFA Package in R

Input MFA_ECM amofa vbmfa AMFA AMFA_inc
Y ✓ ✓ ✓ ✓ ✓

varimax ✓ ✓ ✓ ✓ ✓

eta ✓ ✗ ✗ ✓ ✓

nkmeans ✓ ✗ ✗ ✓ ✓

nrandom ✓ ✗ ✗ ✓ ✓

tol ✓ ✗ ✗ ✓ ✓

conv_measure ✓ ✗ ✗ ✓ ✓

itmax ✓ ✓ ✗ ✓ ✓

gmin ✓ ✗ ✗ ✓ ✗

gmax ✓ ✗ ✗ ✓ ✗

qmin ✓ ✗ ✗ ✗ ✗

qmax ✓ ✗ ✗ ✗ ✗

verbose ✗ ✓ ✓ ✗ ✗

numTries ✗ ✗ ✓ ✗ ✓

Table 2: Summary of inputs for each method in autoMFA.

• gmax; The largest number of components for which an MFA model will be fitted. The
default value is 10.

Inputs common to amofa and vbmfa methods

• verbose; A boolean variable controlling whether or not detailed output should be
printed to the console during the fitting process. The default value is FALSE.

Inputs common to the AMFAinc and vbmfa methods

• numTries; The number of attempts that should be made to split each component. The
default value is 2.

Inputs unique to the MFAECM method

• qmin; The smallest number of components for which an MFA model will be fitted. The
default value is 1.

• qmax; The largest number of components for which an MFA model will be fitted. The
default value is the largest possible q satisfying the Ledermann bound.

Table 2 summarises the inputs for each method in autoMFA.

3.2. Outputs

The output of models fitted using any of the five methods from the autoMFA package share
the structure summarised in Table 3. The returned object is an instance of the MFA class,

John Davey, Sharon Lee, Sharon Lee 7

which is a list with several elements. One of these is an object containing the estimates of
the parameters of the MFA model, which is a list containing the mixing proportion vector π,
the factor loading matrices Bi, error variance matrices Di and mean vectors µi.
Another element of the output object is the clustering information of the fitted model, which
includes the posterior probabilities of each point belonging to each component of the mixture
model, and the clustering implied by these posterior probabilities.
In addition, there will be an element in the output object which contains diagnostic informa-
tion specific to the fitting process of each algorithm, including the BIC and log-likelihood of
the fitted model, as well as the time taken to fit the model.

Output list component Object name Description

model

mu The mean vectors
B The loading matrices
D The error variance matrices
pivec The mixing proportion vector
numFactors Number of factors for each component

diagnostics
bic Fitted model BIC
logL Fitted model log-likelihood
totalTime Total time to fit model

clustering
responsibilities Posterior probabilities
allocations Posterior probability hard allocations

Table 3: The output information common to all autoMFA models.

Table 3 summarises the structure of the output. For example, if our fitted model is called
MFAfit, then the factor loading matrices can be retrieved using MFAfit$model$B. Similarly,
the BIC can be retrieved with MFAfit$diagnostics$bic. All models in the autoMFA package
will provide the information in the table above. However, given the issues discussed above
with the vbmfa method not being able to infer the number of factors reliably, the user should
be aware that its estimates of numFactors and bic will not be reliable.

4. Illustrations
The following example demonstrates how we can fit two MFA models, one using the AMFA
method and the other using the amofa method.
The dataset we are using, testDataMFA, is included in autoMFA. It contains 720 observations
of three dimensional data generated from an MFA model with three components and one
factor for each component. The component means are µ1 = (3, 0, 0), µ2 = (0, 3, 0) and
µ3 = (0, 0, 3) and the mixing proportion vector is π = (0.572, 0.3, 0.094).

R> RNGversion('4.0.3'); set.seed(1)
R> library(autoMFA)
R> MFA_fit_AMFA <- AMFA(testDataMFA, gmin=1, gmax=5)
R> MFA_fit_amofa <- amofa(testDataMFA)

In this case, we have accepted all of the default inputs for the amofa method. For the AMFA
method, we have specified a search for g over all integers between one and five.

8 The autoMFA Package in R

The output object MFAfit contains many useful pieces of information about the model and
the fitting process, as described above. For example, we can obtain a summary of the model
fitted using the AMFA method as follows.

R> summary(MFA_fit_AMFA)

AMFA(Y = testDataMFA, gmin = 1, gmax = 5)
No.components log_like BIC

1 3 -1885.964 3962.726
Component specific numbers of factors:
1 1 1

We can also inspect the model parameters in more detail by using the print method.

R> print(MFA_fit_AMFA)

AMFA(Y = testDataMFA, gmin = 1, gmax = 5)
The mixing proportions are:

[,1] [,2] [,3]
[1,] 0.3328801 0.09444444 0.5726755
The component means are:

[,1] [,2] [,3]
[1,] -0.017768833 0.0337185150 3.07125797
[2,] 2.978728640 0.0007733501 -0.02916128
[3,] -0.001069208 2.9905210245 -0.03371897
The factor loading matrices are:
, , 1

[,1]
[1,] 0.21756621
[2,] 0.04934834
[3,] 0.04876003

, , 2

[,1]
[1,] -0.1467706
[2,] -0.6783866
[3,] -0.4495082

, , 3

[,1]
[1,] 0.91269177
[2,] -0.60770996
[3,] 0.02829478

John Davey, Sharon Lee, Sharon Lee 9

The error variance matrices are:
, , 1

[,1] [,2] [,3]
[1,] 0.04894896 0.0000000 0.00000000
[2,] 0.00000000 0.1098368 0.00000000
[3,] 0.00000000 0.0000000 0.09656364

, , 2

[,1] [,2] [,3]
[1,] 0.1174174 0.0000000 0.00000000
[2,] 0.0000000 0.2109435 0.00000000
[3,] 0.0000000 0.0000000 0.07912817

, , 3

[,1] [,2] [,3]
[1,] 0.2225416 0.00000000 0.0000000
[2,] 0.0000000 0.06377377 0.0000000
[3,] 0.0000000 0.00000000 0.1044417

From this output, we see that the model fitted using the AMFA method has correctly chosen
a three component model. We can also see that the final model has a single factor for each
component. However, the AMFA method strictly adheres to the Ledermann bound, which was
q = 1 in this instance, so the only possible value for q that it considered was one. We can
also see that the model has accurately inferred the underlying means of each component.
If we want to know how long the models took to fit, then the following commands

R> (MFA_fit_AMFA$diagnostics$totalTime)

[1] 54.57857

R> (MFA_fit_amofa$diagnostics$totalTime)

[1] 1.178681

tell us that it took approximately 54.58 seconds to fit the AMFA model and approximately 1.18
seconds to fit the amofa model. Similarly, we can obtain the BIC of each model using the
following code,

R> (MFA_fit_AMFA$diagnostics$bic)

[1] 3962.726

R> (MFA_fit_amofa$diagnostics$bic)

10 The autoMFA Package in R

[1] 3963.495

which was approximately 3962.73 for the model fitted using the AMFA method and 3963.49
for the model fitted using the amofa method. So, in this example, although the model fitted
using the AMFA method took longer to run, it obtained a lower BIC than the model fitted
using the amofa method.
Finally, it is often of interest to consider which component each of the data points has been
assigned to. Each of the methods in autoMFA calculates the posterior probability that each
data point belongs to each component in the mixture; the so-called responsibilities. Taking
the maximum responsibility for each data point allows us to perform hard classifications,
which are also included in the model output. We can access the responsibilities using the
following code.

R> (head(MFA_fit_AMFA$clustering$responsibilities))

[,1] [,2] [,3]
[1,] 4.824245e-21 7.633595e-30 1
[2,] 1.093022e-37 1.732419e-37 1
[3,] 2.273377e-65 2.996617e-39 1
[4,] 3.397391e-15 5.122640e-25 1
[5,] 8.164713e-35 3.584905e-28 1
[6,] 8.822717e-58 8.662674e-31 1

R> (head(MFA_fit_amofa$clustering$responsibilities))

[,1] [,2] [,3]
[1,] 1 9.480926e-30 3.448481e-20
[2,] 1 2.295826e-37 3.201432e-36
[3,] 1 3.766783e-39 5.601019e-63
[4,] 1 6.086420e-25 1.203096e-14
[5,] 1 4.428735e-28 1.369333e-33
[6,] 1 1.075697e-30 4.196938e-56

and the corresponding allocations using

R> (MFA_fit_AMFA$clustering$allocations[1:6])

[1] 3 3 3 3 3 3

R> (MFA_fit_amofa$clustering$allocations[1:6])

[1] 1 1 1 1 1 1

For this example, we observe that both models have assigned the first six data points to the
same cluster, albeit with different group labels. In fact, the allocations made by the two
models are exactly the same in this example. We can visualise the full set of allocations using

John Davey, Sharon Lee, Sharon Lee 11

R> plot(MFA_fit_AMFA)

−1 0 1 2 3 4 5 6

−
1

0
1

2
3

4
5

6

V1

−2 −1 0 1 2 3 4

V2

−1 0 1 2 3 4

−
1

0
1

2
3

4
5

6
−

2
−

1
0

1
2

3
4

−1 0 1 2 3 4

−
1

0
1

2
3

4

V3

Figure 1: The clustering allocations obtained by the model fitted using the AMFA method,
obtained by using the plot method.

12 The autoMFA Package in R

the print method, as shown in Figure 1. We only include a plot for the model fitted using
the AMFA method, since the model fitted using the amofa gives identical allocations.

5. Summary and discussion
This article introduced the autoMFA package for R, which includes five methods for automat-
ically fitting MFA models. The five available methods are AMFA, AMFA_inc, MFA_ECM, amofa
and vbmfa.
The MFA model includes two hyperparameters: g, the number of components and q, the
number of factors in each component. Each of the methods in this package attempts to infer
these hyperparameters with as little input from the user as possible.
In addition, the package also provides useful diagnostic and clustering information of the
fitted models, such as the log-likelihood history of the final model, the responsibilities and
the clustering allocations of the fitted model.

Computational details
The results in this paper were obtained using R 4.2.0 with the autoMFA 1.1.0 package. R
itself and all packages used are available from the Comprehensive R Archive Network (CRAN)
at https://CRAN.R-project.org/.

References

Beal MJ (2003). Variational Algorithms for Approximate Bayesian Inference. Ph.D. the-
sis, University College London, The Gatsby Computational Neuroscience Unit, University
College London, 17 Queen Square, London WC1N 3AR.

Davey J (2021). autoMFA: Algorithms for Automatically Fitting MFA Models. R package
version 1.0.0, URL https://cran.r-project.org/package=autoMFA.

Dempster AP, Laird NM, Rubin DB (1977). “Maximum Likelihood from Incomplete Data
via the EM Algorithm.” Journal of the Royal Statistical Society. Series B (Methodological),
39(1), 1–38. ISSN 00359246. URL http://www.jstor.org/stable/2984875.

Ghahramani Z, Beal MJ (2000). “Variational Inference for Bayesian Mixtures of Factor
Analysers.” In Advances in Neural Information Processing Systems, pp. 449–455.

Ghahramani Z, Hinton GE, et al. (1997). “The EM Algorithm for Mixtures of Factor Ana-
lyzers.” Technical report.

Kaiser HF (1958). “The Varimax Criterion for Analytic Rotation in Factor Analysis.” Psy-
chometrika, 23, 187–200. doi:https://doi.org/10.1007/BF02289233.

Kaya H, Salah AA (2015). “Adaptive Mixtures of Factor Analyzers.” arXiv Preprint
arXiv:1507.02801.

https://CRAN.R-project.org/
https://cran.r-project.org/package=autoMFA
http://www.jstor.org/stable/2984875
https://doi.org/https://doi.org/10.1007/BF02289233

John Davey, Sharon Lee, Sharon Lee 13

Ko K, Baek J (2018). “VaR Estimation Using Skewed Mixture Models and Various Mix-
tures of Factor Analyzers.” Journal of the Korean Data and Information Science Society,
29(3), 769 – 778. URL http://www.kdiss.org/journal/view.html?spage=769&volume=
29&number=3#body01.

Ledermann W (1937). “On the Rank of the Reduced Correlational Matrix in Multiple-factor
Analysis.” Psychometrika, 2, 85–93. doi:https://doi.org/10.1007/BF02288062.

Lee SX (2019). “CytoFA: Automated Gating of Mass Cytometry Data via Robust Skew
Factor Analzyers.” In Advances in Knowledge Discovery and Data Mining, pp. 514–
525. Springer International Publishing, Cham. ISBN 978-3-030-16148-4. doi:10.1007/
978-3-030-16148-4_40.

Maruotti A, Bulla J, Lagona F, Picone M, Martella F (2017). “Dynamic Mixtures of Factor
Analyzers to Characterize Multivariate Air Pollutant Exposures.” The Annals of Applied
Statistics, 11(3), 1617 – 1648. doi:10.1214/17-AOAS1049.

McLachlan G, Peel D (2000). “Mixtures of Factor Analyzers.” In Proceedings of the Sev-
enteenth International Conference on Machine Learning, Langley, P (Ed.), pp. 599–606.
Morgan Kaufmann, San Francisco.

Mclachlan G, Peel D, Bean R (2003). “Modelling High-Dimensional Data by Mixtures of
Factor Analyzers.” Computational Statistics & Data Analysis, 41, 379–388. doi:10.1016/
S0167-9473(02)00183-4.

Meng X, Rubin D (1993). “Maximum Likelihood Estimation via the ECM Algorithm: A
General Framework.” Biometrika, 80(2), 267–278. ISSN 00063444. URL http://www.
jstor.org/stable/2337198.

Meng X, van Dyk D (1997). “The EM Algorithm - An Old Folk-Song Sung to a Fast New
Tune.” Journal of the Royal Statistical Society. Series B (Methodological), 59(3), 511–567.
ISSN 00359246. URL http://www.jstor.org/stable/2346009.

Murphy K, Viroli C, Gormley IC (2021). IMIFA: Infinite Mixtures of Infinite Factor Anal-
ysers and Related Models. R package version 2.1.8, URL https://cran.r-project.org/
package=IMIFA.

Papastamoulis P (2018). “Overfitting Bayesian Mixtures of Factor Analyzers with an Un-
known Number of Components.” Computational Statistics and Data Analysis, 124, 220–
234. doi:10.1016/j.csda.2018.03.007.

R Core Team (2021). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Rathnayake S, McLachlan G, Peel D, Baek J, R Core Team (2019). EMMIXmfa: Mixture
Models with Component-Wise Factor Analyzers. R package version 2.0.11, URL https:
//CRAN.R-project.org/package=EMMIXmfa.

Schwarz G (1978). “Estimating the Dimension of a Model.” The Annals of Statistics, 6(2),
461–464. ISSN 00905364. URL http://www.jstor.org/stable/2958889.

http://www.kdiss.org/journal/view.html?spage=769&volume=29&number=3#body01
http://www.kdiss.org/journal/view.html?spage=769&volume=29&number=3#body01
https://doi.org/https://doi.org/10.1007/BF02288062
https://doi.org/10.1007/978-3-030-16148-4_40
https://doi.org/10.1007/978-3-030-16148-4_40
https://doi.org/10.1214/17-AOAS1049
https://doi.org/10.1016/S0167-9473(02)00183-4
https://doi.org/10.1016/S0167-9473(02)00183-4
http://www.jstor.org/stable/2337198
http://www.jstor.org/stable/2337198
http://www.jstor.org/stable/2346009
https://cran.r-project.org/package=IMIFA
https://cran.r-project.org/package=IMIFA
https://doi.org/10.1016/j.csda.2018.03.007
https://www.R-project.org/
https://CRAN.R-project.org/package=EMMIXmfa
https://CRAN.R-project.org/package=EMMIXmfa
http://www.jstor.org/stable/2958889

14 The autoMFA Package in R

Wang WL, Lin T (2020). “Automated Learning of Mixtures of Factor Analysis Models with
Missing Information.” TEST, 29. doi:10.1007/s11749-020-00702-6.

Yang M, Ahuja N, Kriegman D (1999). “Face Detection using a Mixture of Factor Analyz-
ers.” In Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348),
volume 3, pp. 612–616 vol.3. doi:10.1109/ICIP.1999.817188.

Zhao JH, Yu P (2008). “Fast ML Estimation for the Mixture of Factor Analyzers via an ECM
Algorithm.” IEEE Transactions on Neural Networks, 19(11), 1956–1961. ISSN 1045-9227.
doi:https://doi.org/10.1109/TNN.2008.2003467.

Affiliation:
John Davey
School of Mathematical Sciences
Faculty of Sciences, Engineering and Technology
University of Adelaide
Adelaide, Australia
E-mail: j.davey@adelaide.edu.au

https://doi.org/10.1007/s11749-020-00702-6
https://doi.org/10.1109/ICIP.1999.817188
https://doi.org/https://doi.org/10.1109/TNN.2008.2003467
mailto:j.davey@adelaide.edu.au

	Introduction: The mixture of factor analyzers model
	Available methods
	Package usage
	Inputs
	Inputs common to all methods
	Inputs common to the AMFA, AMFAinc and MFAECM methods
	Inputs common to the AMFA, AMFAinc, MFAECM and amofa methods
	Inputs common to the AMFA and MFAECM methods
	Inputs common to the amofa and vbmfa methods
	Inputs common to the AMFAinc and vbmfa methods
	Inputs unique to the MFAECM method

	Outputs

	Illustrations
	Summary and discussion

